翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

spherical mean : ウィキペディア英語版
spherical mean

In mathematics, the spherical mean of a function around a point is the average of all values of that function on a sphere of given radius centered at that point.
==Definition==
Consider an open set ''U'' in the Euclidean space R''n'' and a continuous function ''u'' defined on ''U'' with real or complex values. Let ''x'' be a point in ''U'' and ''r'' > 0 be such that the closed ball ''B''(''x'', ''r'') of center ''x'' and radius ''r'' is contained in ''U''. The spherical mean over the sphere of radius ''r'' centered at ''x'' is defined as
: \frac\int\limits_ \! u(y) \, \mathrm S(y)
where ∂''B''(''x'', ''r'') is the (''n''−1)-sphere forming the boundary of ''B''(''x'', ''r''), d''S'' denotes integration with respect to spherical measure and ''ω''''n''−1(''r'') is the "surface area" of this (''n''−1)-sphere.
Equivalently, the spherical mean is given by
: \frac \! u(x+ry) \, \mathrmS(y)
where ''ω''''n''−1 is the area of the (''n''−1)-sphere of radius 1.
The spherical mean is often denoted as
: \int\limits_\!\!\!\!\!\!\!\!\!\!\!-\, u(y) \, \mathrm S(y).
The spherical mean is also defined for Riemannian manifolds in a natural manner.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「spherical mean」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.